1 Many household electrical devices have a 'standby' mode. This means that the appliance is in a state of low power consumption while not in use.

Three devices are in standby mode.

Appliance	Standby power in watts
Television	5
Computer	5
CD player	4

1 (a) (i) A homeowner goes away for a trip and is away for a total of 40 hours. Calculate the energy wasted, in kilowatt-hours by leaving all the appliances on standby mode for 40 hours.

Use the correct equation from the equation sheet.
[2 marks]
40×14 [1] = 560
Remember to divide your answer by 1000 to get kWh.
Energy wasted $=\quad 0.560 \quad[2] \quad$ kWh
1 (a) (ii) The cost of electricity is 11 p per kilo-watt hour.
Calculate the cost of leaving the appliances on for 40 hours.

$$
\text { Cost }=6.16 \text { p or } 6.2 \text { p [1] }
$$

You can still get this mark if
you got 1 (a) (i) wrong but
multiplied your answer by 11.

1 (b) Here is some data about the television while switched on.

Power	200 watts
Efficiency	80%
Usage per day	1 hour

The cost of electricity is 11 p per unit.
Calculate the cost of watching the television over a time period of 1 week (7 days).
[3 marks]
$200 \times 1 \times 7=1400[1]$
$1.4 \times 11 p[1]$

Always show working. Remember to divide by 1000 to get to kilo-watt hours.

Cost $=15.4$ p or 15 p [3]

1 (b) (i) Calculate the cost of the energy wasted by the television over 1 week.

$$
\begin{aligned}
& 0.80 \times 1.54-1.54 \text { or } 0.20 \times 1.54[1] \\
& \qquad \text { Cost }=£ 0.308 \text { p or } 0.31 \text { p [2] }
\end{aligned}
$$

You can still get this mark if you got 1 (b) wrong but calculated 20\% correctly.

1 (b) (ii) What happens to the wasted energy?
Transferred to the surroundings. [1]

End

